Chú ý: Để có kinh phí duy trì website, chúng tôi có đặt một số quảng cáo, trong đó có một quảng cáo popup, mong các bạn thông cảm!

Các phương pháp tìm cực trị của hàm số

Bài toán tìm cực trị của hàm số là bài toán thường gặp trong chương trình giải tích 12, các em học sinh cần nắm vững các phương pháp tìm cực trị của hàm số để áp dụng vào quá trình khảo sát sự biến thiên và giải các bài toán liên quan.

Xem thêmMột số dạng toán cực trị hàm số cơ bản và nâng cao

Bài toán cơ bản mà học sinh thường gặp là tìm cực trị của hàm số y = f(x). Có hai phương pháp để làm bài toán này:

Phương pháp 1: Tìm cực trị bằng cách sử dụng bảng biến thiên

Các bước lập bảng biến thiên ta đã được biết trong phương pháp xét tính đơn điệu của hàm số, chỉ khác ở phần kết luận. Ta làm theo các bước sau:

Bước 1: Tìm tập xác định của hàm số f(x)
Bước 2: Tìm y’, giải phương trình y’ = 0.
Bước 3: Lập bảng biến thiên và kết luận:

  • Nếu y’ đổi dấu từ – sang + khi qua điểm ${x_0}$ (từ trái sang phải) thì hàm số đạt cực tiểu tại ${x_0}$.
  • Nếu y’ đổi dấu từ + sang – khi qua điểm ${x_0}$ (từ trái sang phải) thì hàm số đạt cực tiểu tại ${x_0}$.


Ví dụ 1: Tìm cực trị của hàm số $y = \frac{1}{3}{x^3} – \frac{1}{2}{x^2} – 2x + 2$
Giải
Tập xác định: D = R
$y’ = {x^2} – x – 2$
$y’ = 0 \Leftrightarrow {x^2} – x – 2 = 0 \Leftrightarrow \left[ \begin{array}{l}x = – 1\\x = 2\end{array} \right.$
Bảng biến thiên:

bang bien thien cuc tri

Vậy hàm số đạt cực đại tại x = -1 và giá trị cực đại ${y_{{\rm{CD}}}} = y\left( { – 1} \right) = \frac{{19}}{6}$
Hàm số đạt cực tiểu tại x = 2 và giá trị cực tiểu ${y_{CT}} = y\left( 2 \right) = \frac{{ – 4}}{3}$

Ví dụ 2: Tìm cực trị của hàm số $y = \frac{{x + 3}}{{2x – 1}}$

Giải

Tập xác định: $D = R\backslash \left\{ {\frac{1}{2}} \right\}$

$y’ = \frac{{ – 7}}{{{{\left( {2x – 1} \right)}^2}}} < 0\,\,\forall x \in D$

Vậy hàm số không có cực trị.

Phương pháp 2: Tìm cực trị bằng cách sử dụng đạo hàm cấp 2

Phương pháp này thường được sử dụng đối với các hàm số mà việc lập bảng biến thiên tương đối khó khăn. Ta làm theo các bước sau:

Bước 1: Tìm tập xác định.
Bước 2: Tính y’. Giải phương trình y’ = 0 và kí hiệu ${x_i}$ ($i = 1,{\rm{ }}2,…$) là các nghiệm của nó.
Bước 3: Tính  ${f”}\left( x \right)$ và ${f”}\left( {{x_i}} \right)$ rồi kết luận:

  • Nếu ${f”}\left( {{x_i}} \right) < 0$ thì hàm số đạt cực đại tại ${{x_i}}$.
  • Nếu ${f”}\left( {{x_i}} \right) > 0$ thì hàm số đạt cực tiểu tại ${{x_i}}$.

Ví dụ 3: Tìm cực trị của hàm số: $y = \cos x + \frac{1}{2}c{\rm{os}}2x – 1$

Giải

Tập xác định: D = R

$y’ = – {\mathop{\rm s}\nolimits} {\rm{inx}} – \sin 2x$

$y’ = 0 \Leftrightarrow {\mathop{\rm s}\nolimits} {\rm{inx}}(1 + 2\cos x) = 0 \Leftrightarrow \left[ \begin{array}{l}{\mathop{\rm s}\nolimits} {\rm{inx}} = 0\\\cos x = – \frac{1}{2}\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = k\pi \\x = \pm \frac{{2\pi }}{3} + k2\pi \end{array} \right.$

$y” = -\cos x – 2c{\rm{os}}2x$

Ta có: $y”(k\pi ) = -c{\rm{os}}(k\pi ) – 2c{\rm{os}}(k2\pi ) = \pm 1 – 2 < 0$

$ \Rightarrow $ Hàm số đạt cực đại tại $x = k\pi{\rm{}}(k \in {\rm Z})$

$y”\left( { \pm \frac{{2\pi }}{3} + k2\pi } \right) = -c{\rm{os}}\left( { \pm \frac{{2\pi }}{3}} \right) – 2\cos \left( { \pm \frac{{4\pi }}{3}} \right) = \frac{1}{2} + 1 = \frac{3}{2} > 0$

$ \Rightarrow $ Hàm số đạt cực tiểu tại $x = \pm \frac{{2\pi }}{3} + k2\pi{\rm{}}(k \in Z)$

Trên đây là hai phương pháp tìm cực trị của hàm số mà học sinh bắt buộc phải nắm vững. Vấn đề cực trị của hàm số còn có nhiều bài toán liên quan khác như tìm tham số m để hàm số có cực trị hoặc không có cực trị, tìm m để hàm số có cực trị thõa điều kiện…Các bài toán này sẽ được đề cập trong bài viết sau.

Xem bài viếtMột số dạng toán cực trị hàm số cơ bản và nâng cao

Có 20 trả lời

  1. nguyễn bảo ngọc says:

    cho em hỏi là ở phương pháp 1 :
    Khi đi từ – sang + là đạt cực tiểu hay đại, và đi từ + sang – là đạt cực tiểu hay cực đại ạ 🙂

  2. Uyen Nhi says:

    – sang + là cực tiểu nhe

  3. rinngo says:

    tìm giá trị khi ra y” kiểu gì vậy khó quá

  4. Nguyễn says:

    Cảm ơn bài viết… Rất dễ hiểu

  5. Long long says:

    Tim cuc tri khi x khong xac dinh thi lam the nao

  6. Lê Khánh Nam says:

    Tìm y’ là tìm như thế nào ạ ?

  7. Thành bụi says:

    Cho e hỏi tại sao ở vd 1 lại có thể viết y’ = 0 mà ở vd2 y’ < 0 ạ e vẫn chưa hiểu mấy ai giúp e với

    • BAOHTB says:

      Ở ví dụ hai bạn có thể nhận xét y’ < 0 với mọi x vì mẫu luôn dương còn tử là số âm. Do có thể nhận xét như vậy nên không cần cho y'= 0 nữa.

      • Cho em hỏi chút ạ
        Người ta cho y’ bảo mình xác định số điểm cực trị thì dùng BBT hay y” là đúng nhất ạ?

  8. Thành bụi says:

    Vậy nếu tử là dương thì sao ạ

  9. Cho hỏi nếu người ta y’= f(x) thì xác định số cực trị của y như thế nào là đúng nhất ạ?

  10. Nguyễn Duy Tuyên says:

    cho em hỏi 3x+34K+589Y giải sao ạ …

  11. Cho y’ =0 tìm được bao nhiêu nghiệm thì nghiệm đó là cực trị của y

  12. Thầy giúp e giải bài này với ah…tìm cực trị của hàm số y=x+2 nhân căn 1-x

    • BAOHTB says:

      Đạo hàm y’=căn(1-x)-(x+2)/2căn(1-x), cho y’=0 được nghiệm x=0. Lập bảng biến thiên và kết luận.

Ý kiến bạn đọc

Đăng ký nhận bài giảng và tài liệu mới qua email

Cập nhật tài liệu toán hay và mới nhất.

Họ và tên:



Email*:



Bạn đã đăng ký thành công!